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Abstract

The Whitney projed is integrating commodity off-the-shelf PC hardware and soft-
ware techndogy to buld aparall el supercomputer with hundeds to thousands of
nodes. To buld such a system, one must have ascdable software model, and the
install ation and maintenance of the system software must be completely auto-
mated. We describe the design d an architedure for boating, installing and config-
uring noaesin such a system with particular consideration gven to scdability and
ease of maintenance This g/stem has been implemented ona 40-node prototype of
Whitney and isto be used onthe 500 processor Whitney system to be built in
1998

1. Work performed under NASA Contract NAS 2-14303



1.0 Introduction

Recent advances in “commodity” computer techndogy have brougtt the
performance of personal computers close to that of workstations. In addition,
advancesin “off-the-shelf” networking and operating system techndogy have
made it possible to design a parallel system made purely of commodity
comporents, using a puldic domain operating system, at afraction d the st of
MPP or workstation comporents. The Whitney project, at NASA Ames
Research Center, attempts to integrate these comporentsin arder to provide a
cost effedive parallel testbed.

Whil e the cost/performance benefits of using commodity comporents may be
clear, there ae dso obvous problemsin scaling such a system to more than a
coupe of dozen nodes. One of the key issuesin bulding such asystem isdesign-
ing anock install ation and management software that scales. Thisissue, whileit
may seem to be secondary, isin fact vital to bulding aservicedle and wseful
MPP system. For example, when 100 nods are delivered, how long de&s it take
to integrate andinstall them. Also, when anodefails, how hard isit to swapin a
new system to replaceit. If it takes 20 minutes to install anew nodk, it would
take aweek to install a500 noa system. Therefore, we must build a software
system that is automatic, requires minimal system operator intervention, and
allows gare nodes to aayuire their identity easily. Further, we must do this with-
out requiring the node to have akeyboard or monitor install ed, since providing
these would be expensive and would require prohibitive anourts of spacein a
large system.

In this paper an architedure for such a system is described. This g/stem is
currently working in the 40-node Whitney prototype and it has been designed to
be scalable to the next Whitney system, with around 500nodes. Whil e there ae
likely to be additional scalability issues that will appea as Whitney grows, the
prototype system works well andis designed in such away that additional
capadty can be alded if necessary.

Therest of this paper is organized as follows. Sedion 2 describes the overall
architedure of Whitney, both hardware and software. In Sedion 3 trade-offsin
designing a boa/configuration architedure ae described as well as the speafic
architedure design uili zed in Whitney. Finally, Section 4 describes future work
and additional scdability issues that may be faced in the final Whitney design.

2.0 Whitney System Architecture

Asan experiment in using commodity techndogies, Whitney is designed to take
advantage of low cost node hardware & well as puldic domain software and
operating systems. To dete, we have chosen to use the Linux OS and Intel Pen-
tium Pro processor based systems. However, the achitecture of Whitney isnot
dependent on the operating system or on the nocde hardware. Instead, we concen-
trate on adesign that is flexible and that does nat rely onany uncommon herd-



ware or software features. This means that the Whitney design could be built on
top d amost any UNIX system or Windows NT utili zing any stand a one system
(i.e., workstation a PC).

2.1 Hardware
The Whitney hardware achitectureis siown in Figure 1. Whitney consists of a
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Figure 1: Whitney system architecture block diagram

large set of compute nodes, each of whichisasmall desktop system. Therefore,
each noce oontainsahard disk, memory, afloppy dive, etc. Some of these nodes
have specia functions, as determined by Whitney’s system software, and may also
have alditional disk (for I/0O nodes), network connedions, compil er software, etc.
The Whitney nodes are dl attached using an interconredion retwork, and files
reside on either afront end nock or ona parall e file system that is built ontop o
the 1/0O nodes. Thetarget configurationfor Whitney is 50 processorsin Fiscal Yea
(FY) 1997, 500 pocessorsin FY 1998 and 5000processorsin FY 19992000

Currently, Whitney consists of 36 compute nodes, 3 I/0 nodes, and 1front end
noce. The mmpute nodes are configured as foll ows:

« Intel Pentium Pro 200MHz/256K cache

« ASUS RI -P65UPS motherboard, Natoma Chipset

« ASUS FBND CPU board

« 128MB 60rs DRAM memory

« 2.5 GB Western Digital AC2250 fard drive

o Trident ISA graphics card (used for diagnastic purposes only)



They also contain at least one DEC “tulip (21140)" based Fast Ethernet card and
aMyrinet card. The final interconnection retwork for Whitney is gill under
design. Whitney attemptsto deli ver the most performance per doll ar, so we have
been evaluating a number of commodity and spedal purpose networksincluding
Fast Ethernet and Myrinet. Theided network will be scaableto 1000s of nodes
andwill deliver adequate performance for the lowest cost. For more information
onthis evaluation see[BeN98, PeF97].

The 1/O nodes are similar to compute nodes except that they contain 256MB
RAM, two Pentium Pro procesrs, andtwo 9GB SCSI disks. The Front end
nock isasinge processor system with 128VIB RAM, a4GB SCSl disk, and a
second Fast Ethernet conredion for routing to the general NAS network and the
I nternet.

2.2 Operating System Architecture

Whil e the hardware achitedure for Whitney isrelatively smple, there were
some major challengesin designing a manageébl e base software achitedure for
such alarge system. First, we had to decide onwhat type of an operating system
wewould run onead nock. If some sort of distributed operating system was uti-
lized, asin the OSH1 AD onthe Intel Paragon[Int93, Zg93], there would be a
large anourt of overhead for coordinating system nodes. Thiswould almost cer-
tainly overload the network and result in poa system performance a the system
scded to alarge number of nodes. Ancther approach would be to run asmall
bodstrap loader on eat nodk, asin the iPSC/860[Int91] or SUNMOS [Ri€94,
Whe94] onthe Intel Paragon This approad scdes, but leaves the processing
nodes with limited 1/0 cgpability, i.e., the nodes can na open network conrec
tions outside of the machine and nodes can na have locd disk or virtual mem-
ory. Ancther issue that exists with bah the distributed OS approach and the
bodstrap loader approach is maintainability. Neither of these modelsis utili zed
in awidely deployed system, so the operating system would haveto be built spe-
cificdly for Whitney, or ported to Whitney. In addition, we could na benefit
from the econamies of scale derived from using aworkstation a PC operating
system.

The gproad that wastaken was to utilize awidely deployed off the shelf UNIX
based operating system, Linux, onall nodes throughou the system. Whil e the
basic operating system is consistent, the mmporentsinstalled dffer depending
on nock functionality. Compute nodes contain a stripped down version d the
system, containing oy thase ammponrents needed for running appli cation codes,
i.e, run-time libraries, shell's, debuggers, etc. 1/0 nodes also have a stripped
down version d the system, with the adition d the 1/O server software. The
front end systems have al of the necessary compil ers, editors, etc., needed to
build application codes for the cmmpute nodes.

Whil e this basic goproach has been used to buld scdable systemsin the past
such asthe IBM SP-2 andthe Meiko CS-2 [CaF96], making such a system
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maintainable with 100s (much less 1000s) of nodesis dill difficult. One of the
main pieces we have chasen to use for integrating the system is the Portable
Batch System® (PBS). Inits “parallel aware” form, PBS daemons run onead
noce. They start user jobs, make sure jobs complete corredly, enforceresource
limitations, and measure resource usage. Thisisfar more scdable than a “singe
system image” because only the adual parallel jobs need to be managed as an
ensemble. Further, it distributes the system management tasks and ptts the more
system oriented functions onthe adual node they control while still maintaining
a cantral task scheduler.

3.0 Booting, Configuring, and Maintaing Compute Nodes
One of the mgjor scdability battlenecksin systems such asWhitney ishow to go
from an urconfigured nock, as delivered from the manufadurer, to afully con-
figured compute node. Ancther problem is; how does one upgrade acompute
node when anew version d the operating system becmes available? Finaly,
what does one dowhen a node fail s? Whitney’s approad to these problemsisto
trea compute nodes (though no necessarily 1/0 and front end nods) as inter-
change&ble comporents. Every nock has exadly the same operating system and
system software on their hard disk, and aher than two fil es which contain the
noce's identity, there is noway to dstingush between nodes. This makes main-
tenance much easier. When a node fails one can smply replace it with another
one, only the two files must be dhanged. Then, hardware fail ures can be diag-
nosed after the bad nock has been replaced, leaving the main system functional .
However, there ae still many problems that need to be solved for this approach
to work.

3.1 Loading and configuring node software

Assuming youhave 500 PCs; how do youmake them Whitney nodes? The
software auld be loaded off of a CDROM, floppes, or the network. A CDROM
would work, but then youwould have to buld a awustom CDROM for Whitney
and each node would need itsown drive (unlessif youwanted to move aportable
drive 500times). Floppesare not pradica because it would require dozensto
load afunctional system. The answer, of course, istoinstall throughthe network,
which is already attached to every noce. However, to make this g/stem
manageable, we still need to ensure that nodes can be installed with the minimal
amourt of operator intervention. For example, if it takesan operator 1 minute per
noceit requires 8.5 houstoinstal a500 noa system, if it takes 10 minutes per
noceit will take 3.5 days. Therefore, Whitney nodes shoud be able toinstall and
configure themselves automaticdly. Installing and configuring noges
automatically onanetwork is quite possible, but in order to doso, the server
must be &leto tell theidentity of anodein order to set its two urnique files
corredly and to prevent network address corflicts.

1. For more information seehttp://science.nas.nasa.gov/Software/PBS
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One gproadch isto burn some uniqueidentifier in to the system’s ROM. This
information can then be exchanged with the server to determine the node’'s
identity (e.g., the UNIX “BOQOTP” protocol). This approach works, but it
requires omeone to crede hundeds of unique ROMs. Instead of these unique
system ROMSs, one could use ethernet addresses (which are unique identifying
numbers burned in to ROM) to identify a node. Unfortunately, the problem with
both of these goproadhesis that the system administrator will be forced to
manage alist of hundeds (or thousands) of obscure numbers. When anodefail s,
the operator would have to change a number in some table with the identifier of
the spare to be swapped in, or the ROM or ethernet card from the failed noce
would haveto be swapped with the spare. This poses a maor impediment to
system maintainability, and the initial configuration d the system would be
daunting.

Ancther approach isto dyramically assign noce identity. Then, as nodes come
online they could be assigned their network address and that address will last
only until they are turned off or go dawvn. The server would manage apod of
addresses and all ocate/deall ocate them as necessary. This approacdh scales well
however, it has one major drawback. That is, when anoce fails, how do youtell
which noceisdown? Normally, theway anodefailureisdeteded iswhen anode
stops respondng to the network. If node addresses are dynamicdly assigned,
thereisnoway to tell where anode resides physicdly from its network address.
Thisisless of aproblem with asmall system, but with hundeds of systems it
would bevirtualy impossible to troudeshoa node fail uresif node addresses are
not static.

Thefinal approach, which was adopted for Whitney, isto have adevicethat
identifies anode that can be easily moved between systems (i.e., it does not
require the system’s case to be opened). When anode fail s, one must smply
move this deviceto the new system and it will magicdly take onthe identity of
the failed noce. One such deviceisaROM that can be dtadhed througha
parallel or seria port (e.g., asoftware lock like the HASPY). The problem isthat
these ae expensive and they would require some sort of custom “BOOTP’ style
server. We have still not eliminated this approac as a passibility, but for the
early stages of Whitney, we instead dedded to usea 3.5” floppy dsk asthe
uniquely identifying device This has several advantages. Floppesare diegp and
easily created. We can even use Whitney nodes to create their own floppes or
new floppiesfor other systems. Second, floppes can hdd real files, so we
actually store the two unique nocke files on the floppyand they can simply be
copied to the Whitney node upon boading. Finaly, if you also use thisfloppyfor
bodaing, the system can be boaed even when there is no data onthe system’s
disk withou requiring a spedal network boa BIOS. There are dso some
disadvantages to floppes. They wea out, they can be erased or corrupted, and
we still do have to create one for each system as part of the initial system install.

1. see http://www.hasp.com



However these issues are easily overcome with some proadive maintenance
(i.e., frequent credion d spares and floppy replacement).

Once anock has itsidentity, installing and configuring noce hardware isfairly
simple. Workstations have had this cgpability for many yeas. The only spedal
requirements that Whitney must adhere to are that the install ation processmust
be completely automated. However, thisisfairly easy since dl nodes areto be
configured identicdly. In the next sedionthe adual bod/install/configure
process implemented onWhitney is described.

3.2 The boot/configure architecture of Whitney

When anodeis boaed, there ae several possibilities. It can be fully installed
and configured, it can have some information onits hard disk, but nat be fully
configured, or it can have ablank hard dsk. To eliminate the need for operator
intervention when installi ng Whitney nodes, the Whitney nodes can bod regard-
less of their previous state. If anode has ablank hard dsk, anode disk imageis
automatically copied to the node disk. If anode'sdisk isvalid, the node isre-
configured based onbath the node spedafic information contained onthe boa
floppyand aher configuration scripts onthe server. A block diagram of this pro-
cessis own in Figure 2.

Referringto Figure 2, nodes boat from their floppy dive. The floppes must
therefore contain the most recent kernel as well asthe node’'s TCP/IP
configuration information and the Linux bodstrap loader (LILO). Normally
when linuxisboaed, only asingle device ca be spedfied for the roat
filesystem. Linuxtherefore boas and attempts to mourt roat from apartition on
thefirst IDE disk /dev/hda. However, becaise we did nd want to assume that
disks must be aonfigured before boaing, we modified the Linux kernel such that
it will attempt to mourt an NFSroat if the first attempt to mourt aroct
filesystem fail s.

Assume that adisk starts out blank. When Linux attempts to mourt it, the mourt
will fail. Then, we instead mourt a spedal NFS roat filesystem. This NFS root
continues to bod and then runs aspedal install script. The install script first
checksif acourt of the number of unsuccessful install s (stored onthe floppy) is
too high. This prevents nodes from installing forever in the cae of abad disk. If
this chedk succedls, adisk image iscopied from the fil e server onto the roat
filesystem (/dev/hda). Thisdisk imageis smply aminimal installation o Red
Hat Linux withou any modifications from what comes off the Red Hat CD. All
changes to this base image ae made in ather scripts. By nat modifying the CD
install image, we can easily generate anew disk image, and all changesfromthis
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Figure 2: Whitney node boot time configuration process

base image are self documented by the scripts that make them. Table 1
summarizes the names and functions of the various <ripts used to configure
Whitney nodes.

After theinitial disk imageis copied to theroat disk, the “pre-install” script
performs a generic set of one time configuration changes. These changes are



Table 1: Whitney installation scripts

Networ k Root
Script state device location Description
g;ii”r root on One time changes and changes
pre-install up NFS (located in r)eeded to bootstrap self configura-
/export/roots) tion frocess.
Changes needed to configure net-
work, i.e., copy TCP/IP configura
setup-early down /dev/ihda | noderoct disk | tionfrom floppy. Also, floppy
maintenance (check floppyfile sys-
tem, reset install count).
Copy system files from /usr/admin
: to appropriate directories, updete
Jusr/fadmin X
. floppy kernel from /usr/admin,
setup-late up /dev/hda tl\(larl;SOfrl] Igerwjer make other necessary changes,
update setup-early script from
Jusr/admin.

Whitney specific, but are not speafic to the particular node beinginstalled. The
types of changes made & thispaoint are those that are either onetime changesthat
can na be repeded, or changes that are needed to make the boa procedure work
after theroot disk isinstall ed. For example, the /usr/admin drectory (where
Whitney specific files are NFS mourted) is creded, initial /etc/hosts and
letc/passwd files are pied to the roat disk, and the “setup-early” script is
copied to the root disk. Uponcompletion d theinitial node configuration, the
noceis rebooted (now with avalid filesystem onits hard dsk).

After the nodereboas, the Linux kernel is once ayain loaded from the node’'s
floppy. However, this time when the system attempts to mourt /dev/hda, it
succeals. The node then begins boaing namally. Before the node’s network
comes up, it runsthe “setup-ealy” script. This script copies network
configuration information from the floppyto the node’s hard disk. It also
performsany ather configuration stepsthat are needed before the node’s network
comes up (e.g., setting uprouting tables).

Finally, the node brings upits network as well asremote (NFS mourted)
filesystems. Then it runs the “setup-late” script. This script performs any other
nocde configuration, and upaites al global configuration files and scripts from
the aopies kept on the file server.

The setup-ealy and setup-late scripts are run every time anode is boaed with a
valid fil esystem. Therefore, they must perform their changes in away that is not
affeded bywhether the dhanges have dready been made or nat. Further, they
must replace ay fil esthat may have been set incorredly in the past (e.g., if we
change anoce’s I P address by moving bod floppes, al of the old networking
files must be replaced with the new ones).



After running“setup-late,” the nocke is ready and configured. This procedure
works well in most cases. However, if nodes become corrupted withou actually
destroying the fil e system, this may nat work. In these caes, an operator must
intervene, however, the only intervention reeded to fix a corrupted noceisto
forceit to re-install it self. We dothis by boding a spedal disk that contains a
small li nux kernel andfile system. When thisdisk bodsiit runs a script that
corruptsthe first hard drive's superblock, thus triggering the node to re-install
itself onthe next bod.

Oncein operation, if changes need to be made to the cmpute nodes, these must
be dorein ore of the threesetup scripts. Then, the change can either be made
manually or the nodes can be reboaed to make the change. If changes are not
made in the scripts, they will li kely disappea the next time anode is reboaed.
Whil e thismay seam like ahassle, it enforces careful integration o changes and
makes the scripts ®lf documenting. This type of careful management of node
configuration and easy reprodcibility of changesisvital to operate alarge
system.

4.0 Additional Scalability Issues

The major scdability battleneck in this design, assuming the network is ade-
guate, isthe server. Even with a40 noc system, if all nodes smultaneously try
to install their internal disks at once the system will fail. To alleviate this prob-
lem, we try to prevent more than 10 nodes from simultaneously installi ng. This,
however, may be aproblem with alarger system because each install takes about
10 minutes. Therefore, in alarger system it will be important to replicate the
server on several aternate server nodes. Then, depending onthe location onthe
system’s network, the nodes must install from one of the multi ple servers. Thisis
relatively easy sincethe boot disk nat only contains the node’s TCP/IP informa-
tion, but also the address of the node’sboa/ingtall server. The only timethis may
be aproblem isif the system does not have dl nodes onthe same TCP/IP subret
with their server. If thisisthe cae, TCP/IP routing must be set up grior to the
nodes boating. Therefore, it isrecommended that in the final Whitney there be at
least some network in the system that connects nodes to servers without any
routing.

Ancther possible bottlenedk isin the use of NFS to run wser jobs. While it may
be possibleto perform low bandwidth 1/0 across NFSwith 500 nods, it may nat
work. We will not necessarily be @leto determine whether this grategy will
work urtil the large systemis built. If NFSdoes not work properly, it will be
necessary to stage user files onto the nodes prior to exeaution. Also, urtil the
paral e file system is avail able it will be neaessary to stage fil es generated
duringjob exeaution df of the nodes locd fil esystems. Fortunately this facility
isalrealy bult into PBS.
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5.0 Conclusions and Future Work

We have described an architecture for maintaining system software on a com-
modity cluster based system. The system consists of afloppy dsk containing a
noce’'s kernel and identificaioninformation, a server that contains both the ini-
tial install ationimage for eat nock & well as updated system configuration
files, and a set of scripts that kegp the nodes’ configuration upto date regardiess
of itsprevious state. This system isdesigned for maximal scalability and ease of
maintenance. Whil e there will li kely be additi onal issues encourtered when
building the 500 processor Whitney system, thiswork shoud form agood lasis
for the final software implementation.
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